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a b s t r a c t 

A new algorithm for attributed multiplex networks is proposed and analysed with the 

main objective to compute the centrality of the nodes based on the original PageRank 

model used to establish a ranking in the Web pages network. Taking as a basis the Adapted 

PageRank Algorithm for monoplex networks with data and the two-layer PageRank ap- 

proach, an algorithm for biplex networks is designed with two main characteristics. First, 

it solves the drawback of the existence of isolated nodes in any of the layers. Second, the 

algorithm allows us to choose the value of the parameter α controlling the importance as- 

signed to the network topology and the data associated to the nodes in the Adapted PageR- 

ank Algorithm, respectively. The proposed algorithm inherits this ability to determine the 

importance of node attribute data in the calculation of the centrality; yet, going further, it 

allows to choose different α values for each of the two layers. The biplex algorithm is then 

generalised to the case of multiple layers, that is, for multiplex networks. Its possibilities 

and characteristics are demonstrated using a dataset of aggregate origin-destination flows 

of private cars in Rome. This dataset is augmented with attribute data describing city loca- 

tions. In particular, a biplex network is constructed by taking the data about car mobility 

for layer 1. Layer 2 is generated from data describing the local bus transport system. The 

algorithm establishes the most central locations in the city when these layers are inter- 

twined with the location attributes in the biplex network. Four cases are evaluated and 

compared for different values of the parameter that modulates the importance of data in 

the network. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

1. Introduction 

Identifying influential vertices in a network can be useful in many practical fields. Examples of this are risk identification 

in infrastructure [1] , determining influential nodes in social networks [2] , ensuring the security and reliability of the network

[3] , collaborating with the most influential media for advertising [4,5] , evaluating the influence of junctions with the aim of

avoiding overloading roads [6,7] , or defining the influence maximization problem as an algorithmic problem [8] . 
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Various centrality measures including closeness, degree, and betweenness centrality [9] are widely used to this end, 

with the choice of the measure depending on the specific application. Further, PageRank and related algorithms have been 

proposed, extending the concept of network centrality and the range of applications [10,11] . The main idea of the PageRank

algorithm proposed by Page et al. [12] is that a network node is relevant if other important nodes have a link to it. If a

node with a high PR value is linked to another node, the value of the page being linked increases. It plays a crucial role in

the ranking of nodes in complex networks [13,14] . Many scientists have used the PageRank and its modifications to address

various problems. In [15] , Wu and Chen introduce a hierarchical hybrid ranking algorithm to study entrepreneurship and 

innovation activities. The relative importance of scientific articles based on PageRank is presented in Wang et al. [16] . A

social activity ranking method based on the PageRank algorithm is introduced in Nguyen et al. [17] . Ma et al. [18] create a

novel ImageRank algorithm for image retrieval and relevance feedback. In [19] , the authors design an algorithm similar to 

PageRank to identify important news events. 

One of the most important characteristics of complex systems is that the collective behaviour of the system cannot 

be predicted from the properties of its components. The many types of inter-dependencies call for new ways to represent 

networks in which nodes have more than one type of interaction between them. These systems –called multiplex networks–

are characterized by different layers representing different interaction types between nodes. An overview of research on 

multiplex networks can be found in Boccaletti et al. [20] , Kivela et al. [21] . Modelled by a set of networks with interacting

layers, these multilayer networks have been used to describe a many real-world complex systems, such as financial [22] ,

ecological [23] , information [24] , urban [25] , and transportation networks [26] . The recent advances in Big Data technologies

allow to capture more and more types of relations in observed systems. In this context, it may be advantageous to represent

and study these systems by representing them by multiplex networks [27–29] . 

Multiplex networks allow to connect pairs of nodes with multiple links in multiple layers. In addition, the ability to 

capture relations between layers is also important in modelling and explaining empirical multilayer networks. Ranking the 

nodes of these multiplex networks requires to highlight the importance of nodes in each of the interdependent layers [30] .

In [31] , Halu et al. proposed a PageRank algorithm for measuring node centralities in multiplex networks by introducing a

bias exerted by a network layer on the jumps of the random walk in another layer. However, in many real world networks,

attributes described by data intrinsic to the nodes play an important role and require further modelling. In order to take

into account the data intrinsic to nodes, in this paper, we present a network centrality measure for biplex networks. The

proposed algorithm is based on the Adapted PageRank Algorithm (APA) centrality [10,11] and is further is extended in a nat-

ural way to multiplex networks. A key aspect of the proposed algorithm is that, built upon the APA centrality, the random

walk jumps in the algorithm are modelled by the network node attribute data. This allows us to study a range of relation-

ships between among nodes modelled by different layers, as well as to measure the influence of the node attribute data in

each of the network layers. In addition, the proposed algorithm can be applied in any multilayer setting, since it avoids the

problem of isolated nodes in any of the layers. 

To achieve these objectives, the structure of this paper is as follows. A method to construct a multiplex centrality based is

the APA model is presented in Section 2 . In Section 3 , the biplex centrality algorithm is modified with the aim to avoid the

existence of dangling nodes. Then, some characteristics about the meaning of the parameter alpha are discussed ( Section 4 ).

Section 5 aims to show an extension of the centrality to multiplex networks. Numerical results after analysing a real urban

network in Rome are presented in Section 6 . Finally, the conclusions of the work are exposed. 

2. Constructing the multiplex centrality based on the APA model 

Some classical notation for graphs will be used. So, a graph is represented by G = (N , E ) with N a set of n vertices or

nodes and E a set of links between the nodes. The links are represented by the adjacency matrix A = 

(
a i j 

)
square of size

n × n , where 

a i j = 

{
1 if it exists a link between the nodes i and j, 
0 otherwise . 

2.1. Previous work 

This section briefly describes the steps that take us from the original system to the model proposed to measure the

centrality of the nodes of a multiplex complex network. 

PageRank is an algorithm, based on the webgraph, that produces a classification of the web pages according to their 

importance. 

The core of PageRank is the construction of the called Google matrix 

G i j = αS i j + (1 − α) 
1 

N 

, (1) 

where S ij is, by columns, an stochastic matrix obtained from the adjacency matrix of the graph and the number of outgoing

links from a node to the rest. The existence of null columns in S is a consequence of isolated nodes, which is solved by

introducing a constant value 1/ N –with N the number of nodes–. The parameter labeled as α is known as the damping

factor . As it is well-known, the spectral properties of G , defined by (1) causes Perron-Frobenius’s theorem to be satisfied, so
2 
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for 0 < α < 1, there exists a unique and non-negative eigenvector associated to the maximal eigenvalue λ = 1 . This vector

–called PageRank vector– constitutes the rank of the nodes. 

In the APA model described by the Adapted PageRank Algorithm (see [10] , page 2190), a similar reasoning is used to

determine a ranking of the nodes according to their importance. 

In this case, the core of the model is the construction of a matrix M APA given by 

M APA (i j) = (1 − α) P i j + αV. (2) 

The transition matrix P ij is defined as 

p i j = 

{
1 
c j 

if a i j � = 0 , 

0 otherwise , 
1 ≤ i, j ≤ n, (3) 

with c k representing the sum of the k th column of the adjacency matrix. The matrix V in the second term of Eq. (2) is

constructed from a data matrix associated to the network. For more details, see [10] . 

It is important to highlight that the M APA matrix, due to the way it is defined by (2) and (3) , inherits the spectral charac-

teristics of the Google matrix, with the property of being a stochastic matrix by columns. This fact assures us the existence

of the dominant eigenvalue λ = 1 and the consequent right-side eigenvector that constitutes the expected classification of 

the nodes. 

The second idea in which it is based the proposed algorithm for multiplex networks is the PageRank approach described 

by Pedroche et al. [32] , known as two-layer approach . They state that Google matrix (1) may be divided into two terms and

associated to two different layers representing the network. On the one hand, the physical layer , given by the term αS , and,

on the other side, a teleportation layer , given by the term 1/ N . 

In mathematical terms, Pedroche et al. [32] construct the 2 × 2 block matrix 

M A = 

(
αP A (1 − α) I 
2 αI (1 − α) e v T 

)
∈ R 

2 n ×2 n . (4) 

where M A represents a Markov chain. 

The algebraic characteristics of M A –irreducible and primitive– allows us to affirm that 

ˆ πA = πu + πd ∈ R 

n , 

where 
[
π T 

u π
T 
d 

]T ∈ R 

2 n , is the only positive and normalised eigenvector. The structure of this matrix will be generalised for

the case of multiplex networks as it will be described in the following section. 

In Fig. 1 an schematic graphic of the models used to design and implement the APA biplex algorithm for calculating the

nodes’ centrality in biplex networks is shown. For both detailed description –the APA algorithm and the two-layers PageRank 

approach–, see [10,25,32] . 

2.2. Constructing a biplex centrality from the APA algorithm and the two-layers approach 

Taking into account that a multiplex networks is a case in which there are different relationships in each layer but the

same nodes in all of them, we can extend the two layer approach to the case of multiplex netwoks. Behind this process is

the idea of applying the two-layer model to every layer of the multiplex network. 

Let us follow the classical notation for a multiplex network M = (N , E, S) with S = (l 1 , l 2 , . . . , l k ) a set of layers. 

Considering the simplest case of a biplex networks M = (N , E, S) , with two layers S = (l 1 , l 2 ) with adjacency matrices

A 1 , A 2 ∈ R n × n . 

A matrix M 2 [32] is constructed as 

M 2 = 

1 

2 

⎛ 

⎜ ⎝ 

αP 1 I (1 − α) I 0 

I αP 2 0 (1 − α) I 
2 αI 0 (1 − α) e v T 1 (1 − α) e v T 2 

0 2 αI (1 − α) e v T 1 (1 − α) e v T 2 

⎞ 

⎟ ⎠ 

(5) 

with P i , for i = 1 , 2 a stochastic matrices and v i , for i = 1 , 2 personalized vectors. 

Thinking in terms of the APA algorithm, and taking the matrix M APA (2) as the reference, a 2 × 2 block matrix is built 

M APA 2 = 

(
αP A (1 − α) I 
αI αV 

)
∈ R 

2 n ×2 n . (6) 

An algebraic study of the spectral characteristics of M APA 2 allows us to affirm that this matrix is a class of Perron-

Frobenius operators, ensuring the existence and uniqueness of the eigenvector associated with the dominant eigenvalue. 

The following step consists on extending the two-layers APA model given by (6) . Reordering the blocks so that the

physical layer appear in the position (1,1) and the data layer in the block (2,2), we have 

M BI = 

1 

2 

⎛ 

⎜ ⎝ 

(1 − α) P 1 I 2(1 − α) I 0 

I (1 − α) P 2 0 2(1 − α) I 
αI 0 αV 1 αV 2 

0 αI αV 1 αV 2 

⎞ 

⎟ ⎠ 

(7) 
3 
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Fig. 1. Schematic representation of the models used to design the APA biplex centrality algorithm. 

 

 

 

 

 

 

with P 1 and P 2 stochastic matrices by columns and V i , for i = 1 , 2 , data matrices of the two layers respectively. 

As a consequencece, there exists an eigenvector 

ˆ πBI = 

(
πu 1 , πu 2 , πd 1 , πd 2 

)
∈ R 

4 n (8) 

associated to λ = 1 (largest eigenvalue). 

This vector is essential and represents the node’s centralities. Therefore, a unique vector can be obtained. 

x = 

1 

2 

(
πu 1 + πu 2 + πd 1 + πd 2 

)
∈ R 

n , (9) 

with x being a normalized vector. 

2.3. Problems with dangling nodes in multiplex networks 

Let us consider a biplex network with n nodes N = { 1 , 2 , . . . , n } , and two layers, l 1 and l 2 corresponding to two different

relationships between nodes that give rise to the adjacency matrices A 1 and A 2 . 

Because the nodes in the two layers are the same and the relationships are different, it is possible to for dangling nodes

to appear in each of the layers; that is, nodes with no link to other nodes. In this way, we have nodes with degree greater

than zero ( real nodes ) and nodes with degree equal to zero ( virtual nodes ). This has an undesirable effect on the spectral

properties of the transition matrix P that is designed to be irreducible and stochastic by columns. The appearance of rows

and columns of zeros corresponding to the virtual nodes causes P not to be stochastic, making the numerical resolution of

the system based on the calculation of the PageRank vector impossible. 
4 
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Let us discuss this instability with a simple case. Considering a biplex network with 10 nodes and the following two

adjacency matrices 

A 1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 1 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 1 0 

1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 1 0 1 0 0 0 

0 0 0 0 0 1 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 1 0 0 0 

1 0 0 0 0 0 0 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, A 2 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 1 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 1 0 

1 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 0 0 

0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (10) 

We can observe from the adjacency matrices that in layer l 1 there is a dangling node (node 8) while in layer 2 there are

two dangling nodes (nodes 2 and 10). 

If we take A 1 from the first layer and calculate the transition matrix P 1 , we notice that the sum vector of the columns is

sum = [ 2 , 1 , 2 , 1 , 1 , 2 , 2 , 0 , 2 , 1 ] . This leads us to a transition matrix 

P 1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 1 0 0 0 NaN 0 1 

0 0 1 / 2 0 0 0 0 NaN 0 0 

0 1 0 0 0 0 0 NaN 1 / 2 0 

1 / 2 0 0 0 0 0 0 NaN 0 0 

0 0 0 0 0 1 / 2 0 NaN 0 0 

0 0 0 0 1 0 1 / 2 NaN 0 0 

0 0 0 0 0 1 / 2 0 NaN 1 / 2 0 

0 0 0 0 0 0 0 NaN 0 0 

0 0 1 / 2 0 0 0 1 / 2 NaN 0 0 

1 / 2 0 0 0 0 0 0 NaN 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where NaN is the acronym for Not a Number , the result of dividing by zero. As a consequence of this, the matrix 

M APA = (1 − α) P 1 + αV 1 

will not be stochastic by columns and it would be impossible to obtain a classification vector for the nodes. 

If you look at layer l 2 , the adjacency matrix A 2 has two rows of zeros, at nodes 2 and 10, which makes them dangling

nodes. We deal with the same problem as in layer l 1 although now errors occur in the columns 2 and 10. The solution to

this problem is addressed in the next section. 

3. Adapting the biplex centrality based on the APA algorithm for dangling nodes 

To solve the problem of isolated nodes, we must reformulate the basic principles of the PageRank model and the def-

inition of the Google matrix for the most generic case. Let us consider the graph G = (N , E ) with dangling nodes, that is,

nodes with zero degree. From the adjacency matrix A = (a i j ) of the graph G , the matrix P = (p i j ) is redefined as: 

p i j = 

{
0 if i is a dangling node, for all j = 1 , 2 , . . . , n. 
1 
c j 

if a i j � = 0 . 
(11) 

In this case, with the aim to construct a column stochastic matrix, we substitute the matrix P in the calculation of the

matrix M APA with a new matrix P ∗ given by 

P ∗ = P + d · u 

T , (12) 

where d is the vector characterizing the dangling nodes defined as 

d i = 

{
1 , if i is a dangling node, 
0 , otherwise, 

and u ∈ � 

n characterizes the distribution of dangling nodes such that u > 0 and u T e = 1 , with e = ( 1 , 1 , . . . , 1 ) . 

Rewriting P as (12) we make sure that we continue working with a stochastic matrix by columns so that we have the

proper spectral features to obtain the classification vector. 

Another aspect that must be highlighted is related to the construction of the V matrix based on the individual data

associated with each node of the graph. For those virtual nodes that have no connection with the rest of the nodes, the data

associated to them is zero. That means that the data vector v has a zero component in all the positions corresponding to

dangling nodes. 

It may be the case of having a large number of virtual nodes, which would lead to a high number of null values in V .

On the other hand, it may be convenient, not only from the point of view of numerical stability, but also from the idea of
5 
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Fig. 2. Schematic representation of the APA biplex centrality model. 

 

 

 

 

 

 

the influence of the whole data in the network, to introduce a small coefficient in places that have a null value of data. This

small coefficient, that will be denoted as coef , may be defined as 

coe f = 

min (D ) > 0 

k − n 

, (13) 

where D is the data matrix, k is the quantity of dangling nodes and n the number of nodes. 

From this coefficient, it is possible to redefine the data vector v adding these small values at the positions of dangling

nodes. This new data vector v up is then given by 

v up (i ) = 

{
v (i ) , if i has nonzero degree, 
coe f, otherwise, 

As can be seen, the introduced coefficient represents a small value obtained by dividing the minimum data value associ- 

ated to the nodes by the total number of dangling nodes. 

Taking into account the modifications proposed regarding the matrix P ∗ and vector v up , the matrix from which the cen-

trality measure will be obtained may be rewritten as 

M BI = 

1 

2 

⎛ 

⎜ ⎝ 

(1 − α) P ∗1 I 2(1 − α) I 0 

I (1 − α) P ∗2 0 2(1 − α) I 
αI 0 αV 1 αV 2 

0 αI αV 1 αV 2 

⎞ 

⎟ ⎠ 

(14) 

Fig. 2 details a graphic scheme of the centrality model for biplex networks –based on the APA algorithm– with dangling

nodes. Note how the most notable changes with respect to the previous model occur in the construction of the matrices P ∗
1 

and P ∗
2 

as well as in the inclusion of a residual value in the data vector representing nodes with zero connectivity in any of

the layers. 

The scheme shown in Fig. 2 can be summarized in Algorithm 1 . 

Following the simple example studied above with 10 nodes, where there were two layers with the adjacency matrices 

given by (10) . Let us assume that the data matrices D 1 , D 2 are 

D 1 = [ 2 , 2 , 5 , 2 , 1 , 3 , 2 , 0 , 7 , 2 ] 
T 
, D 2 = [ 4 , 0 , 5 , 6 , 1 , 5 , 2 , 4 , 3 , 0 ] 

T 
. 

From the adjacency matrices, we detect the dangling nodes and, using the definitions of the vectors d i and u i , for i = 1 , 2 ,

we have that 

d 1 = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ] 
T 
, d 2 = [ 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ] 

T 
. 
6 
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Input : Let M = (N , E, S) be a biplex network with N = { 1 , 2 , . . . , n } the set of nodes, S = (l 1 , l 2 ) two layers and A 1 

and A 2 the respective adjacency matrices. 

Let D 1 and D 2 the data matrices associated to nodes in layers l 1 and l 2 , respectively, and weighted vectors �
 v 01 

and 

�
 v 02 , respectively. 

Output : � x representing the graph centrality 

begin 

For the layers l i , for i = 1 , 2 , construct the vectors and matrices: 

– P i , the probability matrices from (3) 

– vectors � d i , � u i from the adjacency matrices A i 

Compute P ∗
i 

, for i = 1 , 2 , from (12) 

Compute the data vectors � v i , for i = 1 , 2 , as � v i = D i · �
 v 0 i 

Compute the coefficients coe f i , for i = 1 , 2 , from (8) 

From 

�
 v i and coe f i , for i = 1 , 2 , compute � v up 

i 

Normalize � v up 
i 

, for i = 1 , 2 and denote it as { � v up 
i 

} ∗
Construct V i , for i = 1 , 2 

Construct the matrix M BI from (14) 

Compute the dominant eigenvector �
 ˆ πBI of M BI 

Compute the centrality � x 

end 

Algorithm 1: APA biplex networks algorithm for computing the node’s centrality. 

 

u 1 = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ] 
T 
, u 2 = [ 0 , 1 / 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 / 2 ] 

T 
. 

Once P i , d i , u i have been computed, the matrices P ∗
i 

are obtained as 

P ∗1 = P 1 + d 1 · u 

T 
1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 1 0 0 0 0 0 1 

0 0 1 / 2 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 1 / 2 0 

1 / 2 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 / 2 0 0 0 0 

0 0 0 0 1 0 1 / 2 0 0 0 

0 0 0 0 0 1 / 2 0 0 1 / 2 0 

0 0 0 0 0 0 0 1 0 0 

0 0 1 / 2 0 0 0 1 / 2 0 0 0 

1 / 2 0 0 0 0 0 0 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (15) 

and 

P ∗2 = P 2 + d 2 · u 

T 
2 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 1 / 2 1 1 / 2 0 0 0 0 0 

0 1 / 2 0 0 0 0 0 0 0 1 / 2 

1 / 3 0 0 0 0 0 0 0 1 0 

1 / 3 0 0 0 0 0 0 0 0 0 

1 / 3 0 0 0 0 1 0 0 0 0 

0 0 0 0 1 / 2 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 0 0 

0 0 1 / 2 0 0 0 0 0 0 0 

0 1 / 2 0 0 0 0 0 0 0 1 / 2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (16) 

Note that both P ∗
i 

given by (15) and (16) are now column stochastic matrices. 

Regarding the data vectors, we update vectors v i to obtain vectors v up 
i 

, for i = 1 , 2 , by computing the following parame-

ters involved in the updating process. 

min (D 1 > 0) = 1 , min (D 2 > 0) = 1 , k 1 = 1 , k 2 = 2 . 

Using the expression (13) , the respective coefficients are 

coe f 1 = 1 , coe f 2 = 1 / 2 . 

In this way, the updated data vectors are 

up T up T 
v 
1 

= [ 2 , 2 , 5 , 2 , 1 , 3 , 2 , 1 , 7 , 2 ] , v 
2 

= [ 4 , 1 / 2 , 5 , 6 , 1 , 5 , 2 , 4 , 3 , 1 / 2 ] . 

7 
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4. Some considerations about the α parameter 

In the PageRank model, the parameter α represented the probability that a “surfer” follows the links of a web page 

uniformly and randomly. In this context, –of random surfer– the choice of α is not well justified, although in the original 

proposal of Page and Brin [33] they used α = 0 . 85 . In the extensive literature for web surfer, two choices are highlighted:

α = 0 . 85 and α = 0 . 5 (see, for instance, [34] ). 

In the APA centrality algorithm, the α parameter has a different meaning, since it represents the importance we attach 

to the data associated with each node, while the value (1 − α) represents the importance that we assign to the topology of

the network we are studying. 

In the design and assessment process of the different algorithms, both for single-layer networks and multi-layer net- 

works, no mention about the alpha parameter at any time is done, since we assume that it is a fixed value that is initially

chosen and used in both layers of the biplex network. This means that an equal importance to the data and the network

connectivity in both layers is given. However, depending on the application context, it may happen that the node attribute 

data is more important in one of the layers and not in the other. If the same value of the parameter in the two layers is

chosen, these differences will not be considered. The objective is to be able to set different parameter values for the dif-

ferent layers. We could consider the node attribute data to be more important than the topology in one layer but not the

other. To contemplate these multiple possibilities, we need to introduce αi , for layers l i , with i = 1 , 2 . 

Therefore, the matrix M BI may be adapted as: 

M BI = 

1 

2 

⎛ 

⎜ ⎝ 

(1 − α1 ) P 
∗
1 I 2(1 − α1 ) I 0 

I (1 − α2 ) P 
∗
2 0 2(1 − α2 ) I 

α1 I 0 α1 V 1 α2 V 2 

0 α2 I α1 V 1 α2 V 2 

⎞ 

⎟ ⎠ 

(17) 

and Algorithm 1 modified as: 

Although the changes in the algorithms are minimal, the possibilities offered by being able to choose different alpha 

values in each layer are very important, since it allows to establish the importance that we associate to the node attribute

data in each of the layers. 

5. Extending the centrality to multiplex networks 

Matrix M BI , given by the expression 17 , is the key in the entire process of the algorithm construction leading to the

computation of the centrality. The spectral properties of this matrix and its stochastic characteristic allow us to calculate its 

dominant eigenvector that represents of the ranking of the nodes. A closer look at the structure of the matrix reveals that

its extension to the case of multiple layers is easy. The block structure of this matrix favors its natural extension as we see

below. 

We have to remark that M BI is constructed for biplex networks. Let us assume that we have a multiplex network with

k layers { l 1 , l 2 , . . . , l k } , a set of adjacency matrices { A 1 , A 2 , . . . , A k } and k data matrices { D 1 , D 2 , . . . , D k } . Let α1 , α2 , . . . , αk be 

the parameter values for the layers l 1 , l 2 , . . . , l k , respectively. Then, M BI may be extended to multiplex networks as 

M multi = 

1 

k 

(
M 1 , 1 M 1 , 2 

M 2 , 1 M 2 , 2 

)
(18) 

with 

M 1 , 1 = 

⎛ 

⎜ ⎝ 

(1 − α1 ) P 
∗
1 I . . . I 

I (1 − α2 ) P 
∗
2 . . . I 

. . . . . . . . . . . . 

I I . . . (1 − αk ) P 
∗
k 

⎞ 

⎟ ⎠ 

, M 2 , 2 = 

⎛ 

⎜ ⎝ 

α1 V 1 α2 V 2 . . . αk V k 

α1 V 1 α2 V 2 . . . αk V k 

. . . . . . . . . . . . 

α1 V 1 α2 V 2 . . . αk V k 

⎞ 

⎟ ⎠ 

. 

Both M 1,2 and M 2,1 are block diagonal matrices and are given by 

M 1 , 2 = 

⎛ 

⎜ ⎝ 

2(1 − α1 ) I 0 . . . 0 

0 2(1 − α2 ) I . . . 0 

. . . . . . . . . . . . 

0 0 . . . 2(1 − αk ) I 

⎞ 

⎟ ⎠ 

, M 2 , 1 = 

⎛ 

⎜ ⎝ 

α1 I 0 . . . 0 

0 α2 I . . . 0 

. . . . . . . . . . . . 

0 0 . . . αk I 

⎞ 

⎟ ⎠ 

. 

The matrix M multi constructed as shown in Eq. (18) inherits the spectral properties of M BI ; therefore, the dominant eigen-

vector allows us to compute the centrality x . We must also comment that the size of the matrix M multi grows remarkably

when we add layers in the network. More exactly, the size of M multi is 2 kn , where k in the number of layers and n in

the number of nodes. Thus, for large networks –with tens of thousands of nodes and more than 5 o 6 layers– it will be

necessary to optimize the calculation of the dominant eigenvector. 
8 
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Fig. 3. ( left ) Private car GPS trajectories superimposed on the grid in Rome ( middle ) Layer 1 of biplex network: Rome OD network with some popular 

locations highlighted ( right ) Layer 2 of biplex network: bus connection network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Numerical results 

Nowadays, we show a real example of biplex network related to the urban network of the city of Rome, Italy. Data about

car flows and the public bus transport system will be used to analyse and determine the most central areas of the city when

both data are studied. To perform this, let us first briefly describe the dataset used for the numerical example. 

6.1. Rome dataset 

We use a custom dataset of aggregate origin-destination (OD) flows of private cars in Rome augmented with attribute 

data describing city locations in Rome. The workflow of building the dataset is as follows: 

1. We subdivide the urban territory of Rome into n Cartesian grid cells of size 1 × 1 km, and consider each such quadratic

cell as a node in the graph. 

2. We have obtained GPS trajectory data of around 10,0 0 0 private cars spanning a period of one year from a car insurance

company. After cleaning and processing the data, we superimpose the GPS trajectories on the urban grid ( Fig. 3 ), and

identify trip origins and destinations by setting a time threshold of the engine being off. Thresholds in the interval from

10 to 35 minyielded robust outcomes, and so we take 20 min as the threshold. We then map the identified origin-

destination points to the grid cell which they fall into. 

3. We build the first layer in the biplex network - the OD network - from the extracted origin-destination pairs by aggre-

gating the flow counts over a year. 

4. Similarly, we build the second layer of the biplex network by drawing an edge between a pair of grid cells if there is a

public transport connection (bus) between them, and weight these edges by the number of such connections ( Fig. 3 ). 

6.2. The numerical results 

As described in Section 6.1 , we build a biplex network for the city of Rome with the nodes being the centroids of the grid

representing the urban streets network. The two layers of the biplex network will represent the car flows between nodes 

and the bus transport system, respectively. As the biplex model allows us to establish different relationships between the 

nodes using different data, the idea in this case study is to analyse and visualise the relationship between a public transport

system such as the urban bus connectivity and the car OD flows between different city locations. 

Consequently, two layers may be defined with these characteristics: 

• Layer 1 : the graph is composed of the nodes of the urban network and an edge is drawn between two nodes if there is

at least one car unit flow between these nodes. The attribute data associated to every node is the total quantity of in-

and out-flows from the node. 
• Layer 2 : this layer graph has the same nodes, and two nodes are linked by an edge if there exists non-zero car flow

between them and there also exists at least a bus line connecting them. The data associated to the nodes is the total

number of bus lines connecting a node with the remaining ones. 

For instance, node number 9 is linked by at least one OD car flow with the nodes 1, 298, 416, 633, 713, 715, 730, 775,

999, 1083, 1087, and 1486. However, in layer 2 node 9 is linked only with the nodes 1 and 416 since there exists at least

one bus line connecting the nodes. More precisely, between nodes 9 and 1 there are 6 lines connecting them and there

are 2 bus lines connecting the nodes 9 and 416. Therefore, the data associated to the node 9 is 6 + 2 = 8 . 

In this example we are quantifying and analysing urban mobility as well as the bus transport system. The advantage to

work with two or more layers is that it is possible to measure several relationships with different datasets between nodes,

which is not possible in networks with only one layer. 
9 
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Another characteristic of this model is the possibility of differentiating the im portance assigned to the data in each of

the layers. In the definition of matrix M BI given by the expression (17) each of the blocks has its own parameter αi . This

allows us to consider giving more importance to the data associated to the nodes in the first layer or, on the contrary, giving

more value to the data in the second layer. 

Case 1: α1 = 0 . 2 , α2 = 0 . 2 In the first case analysed, we choose the same value of the parameter for both layers, that is,

αi = 0 . 2 , for i = 1 , 2 . This choice of parameters means that we are giving the same importance to data in both layers.

Note that, following the original APA algorithm, the parameter varies in the interval (0,1); therefore, a low value of 

αi also means that we give much more importance to the network topology than to the node attribute data. On the

contrary, if we give a high value for the parameter, we are giving much more importance to the data associated to

the nodes than to the graph topology. 

We executed Algorithm 2 to obtain the biplex centrality of all the nodes according to the model described in this

Input : Let M = (N , E, S) be a biplex network with N = { 1 , 2 , . . . , n } the set of nodes, S = (l 1 , l 2 ) two layers and A 1 

and A 2 the respective adjacency matrices. 

Let α1 and α2 be the values of the parameter α for layers l 1 and l 2 , respectively. Let D 1 and D 2 be the data 

matrices associated to nodes in layers l 1 and l 2 , respectively, and weighted vectors �
 v 01 and 

�
 v 02 , respectively. 

Output : � x representing the graph centrality 

begin 

For the layers l i , for i = 1 , 2 , construct the vectors and matrices: 

– P i , the probability matrices from (3) 

– vectors � d i , � u i from the adjacency matrices A i 

Compute P ∗
i 

, for i = 1 , 2 , from (12) 

Compute the data vectors � v i , for i = 1 , 2 , as � v i = D i · �
 v 0 i 

Compute the coefficients coe f i , for i = 1 , 2 , from (8) 

From 

�
 v i and coe f i , for i = 1 , 2 , compute � v up 

i 

Normalize � v up 
i 

, for i = 1 , 2 and denote it as { � v up 
i 

} ∗
Construct V i , for i = 1 , 2 

Construct the matrix M BI from (17) 

Compute the dominant eigenvector �
 ˆ πBI of the matrix M BI 

Compute the centrality � x 

end 

Algorithm 2: APA biplex networks algorithm to compute the node’s centrality using different values of the α parameter. 

paper. In Fig. 4 (top) we show the map of Rome with the values of the biplex centrality, that we will denote in the

following as PGBI, representing the size of the nodes proportional to their centrality value. 

Case 2: α1 = 0 . 8 , α2 = 0 . 8 In this case, we also choose the same value of the α parameter for both layers, that is, αi = 0 . 8 ,

for i = 1 , 2 . However, as opposed to case 1, the value of the parameter is α = 0 . 8 , which means that we are giving

much more importance to the data than to the connectivity in the individual layers. Now, we are more interested in

measuring the influence of data than the influence of the links between the nodes. 

The values of the biplex centrality for this choice of α can be seen in Fig. 4 (bottom). We can see the differences with

respect to the first case. 

Case 3: α1 = 0 . 3 , α2 = 0 . 8 This case under study introduces a new variant since now the values taken by the alpha

parameter are different for each layer. Thus, the α1 value for layer 1 is 0.3, which means that in layer 1 we give less

importance to the data and greater to the connectivity within the network. However, we take the value α2 = 0 . 8 for

layer 2, which means that we measure the importance of the nodes in this layer giving more importance to the data

and less importance to the connectivity. 

We can see a visualization of the biplex centrality for this case in Fig. 5 (up). 

Case 4: α1 = 0 . 8 , α2 = 0 . 3 This case is similar to case 3 with the difference that now α1 = 0 . 8 and α2 = 0 . 3 . This means

that we give more importance to the node attribute data in the layer 1 and to the connectivity in layer 2. The results

are displayed in Fig. 5 (down). 

Table 1 summarizes the results of the 25 most central nodes for the four studied cases, based on the choice of α1 and

α2 in the two layers of the network. The centrality is shown in the column labeled PGBI. 

If we look, for instance, at the results obtained for case 1 and case 4, where the network and data are assigned a greater

importance, respectively, we observe that of the first ten most central nodes only 2 appear in both listings: nodes 634 and

1460. 

Fig. 4 offers useful information. The centrality, for the case α1 = α2 = 0 . 2 is shown in the upper part. This choice of

parameters means that we consider the node attribute data as less important than the network topology in both layers. In

the lower part of Fig. 4 , the opposite case is shown, with α = α = 0 . 8 . Now, we give much more importance to the total in-
1 2 
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Fig. 4. Biplex centrality PGBI for α1 = α2 = 0 . 2 (top) and α1 = α2 = 0 . 8 (bottom). 
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Fig. 5. Biplex centrality PGBI for α1 = 0 . 3 and α2 = 0 . 8 (top) and α1 = 0 . 8 and α2 = 0 . 8 (bottom). 
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Table 1 

The first 25 most central nodes for the studied numerical cases. 

α1 = 0 . 2 , α2 = 0 . 2 α1 = 0 . 3 , α2 = 0 . 8 α1 = 0 . 8 , α2 = 0 . 3 α1 = 0 . 8 , α2 = 0 . 8 

ranking node PGBI node PGBI node PGBI node PGBI 

1 270 0.068118 1437 0.114870 790 0.107058 1437 0.117651 

2 367 0.060640 1485 0.114636 1460 0.099745 634 0.115931 

3 634 0.060223 634 0.110817 776 0.096553 1485 0.112266 

4 1460 0.059685 1478 0.107259 1122 0.095818 1460 0.106568 

5 809 0.059439 740 0.104394 634 0.092842 790 0.104531 

6 340 0.058988 1469 0.092490 673 0.092495 776 0.100668 

7 44 0.058983 1460 0.091879 777 0.091264 740 0.099942 

8 149 0.057718 1023 0.091119 732 0.090415 1001 0.099353 

9 64 0.057618 794 0.090761 1120 0.089788 839 0.098693 

10 1468 0.057595 1468 0.089183 1468 0.088741 1478 0.097365 

11 150 0.057505 839 0.087562 1001 0.085205 1468 0.096991 

12 301 0.057440 1013 0.086017 1437 0.083270 1469 0.093373 

13 586 0.056891 776 0.083814 791 0.083016 673 0.090841 

14 1469 0.055625 1486 0.082705 858 0.082981 794 0.088529 

15 1122 0.055414 1014 0.082375 839 0.082880 732 0.084063 

16 776 0.055333 1001 0.082046 861 0.082831 1023 0.083701 

17 148 0.054751 1470 0.079746 1016 0.082021 1014 0.083121 

18 1283 0.054659 1002 0.079721 860 0.080953 791 0.083013 

19 740 0.054000 616 0.078429 270 0.080392 1120 0.082989 

20 712 0.053724 817 0.076460 711 0.079724 858 0.082569 

21 673 0.053722 738 0.076299 1469 0.078576 1013 0.082471 

22 777 0.053695 1479 0.075673 712 0.078563 861 0.081994 

23 714 0.053618 1438 0.074511 773 0.078317 862 0.081933 

24 271 0.053441 64 0.074433 769 0.078037 777 0.080259 

25 204 0.053046 739 0.073911 811 0.077536 1002 0.080107 

Table 2 

Spearman’s correlation coefficient for the four studied cases, considering the 25 most central nodes and all the nodes, respectively. 

25 nodes α1 = 03 , α2 = 08 α1 = 08 , α2 = 03 α1 = α2 = 08 ALL nodes α1 = 03 , α2 = 08 α1 = 08 , α2 = 03 α1 = α2 = 08 

α1 = α2 = 02 ρ = 0 . 179231 ρ = 0 . 019230 ρ = 0 . 035385 α1 = α2 = 02 ρ = 0 . 051641 ρ = 0 . 022459 ρ = 0 . 055890 

α1 = 03 , α2 = 08 ρ = 0 . 238461 ρ = 0 . 118461 α1 = 03 , α2 = 08 ρ = 0 . 095983 ρ = 0 . 049532 

α1 = 08 , α2 = 03 ρ = 0 . 259231 α1 = 08 , α2 = 03 ρ = 0 . 055624 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and out-flow as well as total bus connections associated to each node. We clearly see the difference in the maps. Specifically,

in the lower figure the main roads of the city are clearly perceived, which is precisely where more public transport exists.

These main roads, as well as train stations, contain nodes with a high centrality value. 

In order to find whether there is a correlation between the ranking results in the four discussed cases, we compute the

Spearman coefficient ρ , measuring the statistical correlation between the rankings of the nodes. A positive value of ρ near 

+1 means a high association of ranks, while a value near 0 means no association between ranks. 

Table 2 shows the results of the Spearman correlation coefficient for the centralities evaluated taking the four discussed 

cases, for different values of α1 and α2 . On the left part, the correlation between the 25 most central nodes in the four

cases described is analyzed, while on the right all nodes are used for the calculation of the correlation. We can see that the

correlation values are higher for the first 25 nodes, although in none of the cases measured the coefficient ρ is close to +1 ,

which would mean an absolute correlation between the node rankings in the four cases. 

This demonstrates the importance of choosing the αi parameters in the model, giving more or less importance to the 

data than to the network itself. 

7. Conclusions 

In this paper, a measure of centrality for multiplex networks has been designed and evaluated with a real numerical 

example with the fundamental characteristic that both the connectivity of the graphs and a set of data present in each layer

associated to the nodes are taken into account. The starting point is the original idea of the APA algorithm that introduces

the influence of a set of data present in a network to the computation of the centrality of the nodes. The model solves the

problem of the existence of isolated nodes in any of the layers by introducing a residual value for all nodes and representing

the influence of the presence of data in the overall network. In addition, the proposed method introduces a variant with

respect to the original alpha parameter related to the PageRank vector consisting of the choice of a different parameter for

each of the layers. This difference in the value of α allows to take into account the importance assigned to the topology or to

the data associated with the nodes in each of the layers. This allows for a flexibility that is demonstrated in the case study

of the urban mobility OD and the urban bus network in the city of Rome. In that case study, a network with two layers is
13 
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evaluated, where in the first layer a graph represents the OD car flows in the city, while the second layer represents local

urban bus connectivity between city locations. The model solves the problem of the isolated nodes of the second layer and

it allows to choose the importance of the node attribute data in each layer. Four different cases corresponding to different

meaningful combinations of the α parameter are evaluated and visualised. The differences among the cases as visible from 

the most central city locations in each case show the advantage and utility of the proposed algorithm. 
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